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It is shown that the Orr-Sommerfeld equation, which governs the stability of any 
mean shear flow in an unbounded domain which approaches a constant velocity in the 
far field, has a continuous spectrum. This result applies to both the temporal and the 
spatial stability problem. Formulae for the location of this continuum in the complex 
wave-speed plane are given. The temporal continuum eigenfunctions are calculated 
for two sample problems: the Blasius boundary layer and the two-dimensional 
laminar jet. The nature of the eigenfunctions, which are very different from the 
Tollmien-Schlichting waves, is discussed. Three mechanisms are proposed by which 
these continuum modes could cause transition in a shear flow while bypassing the 
usual linear Tollmien-Schlichting stage. 

1. Introduction 
The problem of the stability of laminar flow against externally imposed disturbances 

and the connexion between instability, if it exists, and the transition from laminar to 
turbulent flow has been studied for nearly a century and remains one of the central 
problems in fluid dynamics. Ever since Reynolds’ classic experiments (1883) it has been 
conjectured that transition from laminar to turbulent flow is the result of an instability 
in the laminar flow. Beginning with Rayleigh (1880), there have been many theoretical 
studies which have attempted to predict under what conditions small disturbances 
in the velocity profile would grow or decay. 

The main interest in stability calculations centres on the stability of boundary-layer 
flows and related flows such as jets, wakes and free shear flows; Couette and par- 
ticularly Poiseuille flow have had the status of ‘ canonical’ problems. Tollmien (1931), 
Schlichting (1951) and Lin (1955) made notable advances in the analytical calculation 
of the stability of these parallel shear flows to two-dimensional wavelike disturbances, 
the Tollmien-Schlichting waves (hereafter called TS waves). The restriction to two- 
dimensional waves was justified by a result of Squire (1933), who showed that, if an 
oblique wave is unstable at some Reynolds number, then a two-dimensional TS wave 
is unstable at a smaller Reynolds number. Thus, in order to find the critical Reynolds 
number it suffices to consider only two-dimensional TS waves. 

Although the theory wm highly developed, it was, prior to the early 1940’s, generally 
regarded as irrelevant to the actual mechanics of transition because TS waves had 
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never been observed experimentally, and it appeared that any disturbance, whether 
in the free stream, in the boundary layer or on the boundary, could cause a transition 
if it was large enough or if the Reynolds number was high enough. 

The experimental studies of Schubauer & Skramstad (1941,1947,1948) first showed 
that, if the free-stream disturbances, wall vibrations etc. were sufficiently small, the 
appearance and growth of TS waves could play a dominant role in boundary-layer 
transition. They found generally good agreement between the predictions of linear 
stability theory and the experimental results, not only for the shape of the neutral- 
stability curve and the phase speeds of the TS waves, but also for the shape of the TS 
waves as a function of distance from the boundary. 

While the work of Schubauer & Skramstad showed the essential correctness of 
linear stability theory, the calculations of the detailed stability characteristics for a 
particular profile remained quite delicate in that the results obtained were sensitive 
to the detailed shape of the profiles and the approximations used in the asymptotic 
analysis. It is only the development of sophisticated numerical methods and the 
high-speed computers to implement them (Brown 1959; Kurtz & Crandall 1962; 
Nachtsheim 1963; Kaplan 1964; Gallagher & Mercer 1964; Mack 1965; Landahl 
1966; Radbill & Van Driest 1966; Wazzan, Okamura & Smith 1968; Lessen, Sadler 
& Liu 1968; Grosch & Salwen 1968; Orszag 1971 ; Salwen & Grosch 1972) that has made 
these calculations relatively routine. 

It is usually assumed that the eigenvalue problem of linear stability theory has an 
infinite set of discrete eigenvalues and a corresponding infinite set of eigenfunctions. 
Assuming the completeness of this set of eigenfunctions, an arbitrary initial disturb- 
ance which satisfies the boundary conditions can be expanded in terms of them. We 
know of no general proof of this completeness ‘theorem ’. 

Almost all stability calculations have been concerned with finding the first or least 
stable eigenvalue. It should be noted that, if expansion (spectral) techniques (Grosch 
& Salwen 1968; Orszag 1971; Salwen & Grosch 1972) are used to solve the eigenvalue 
problem in a finite domain, a number of the higher eigenvalues are found numerically 
along with the first. If a sufficient number of terms is used in the expansion, these 
numerically calculated eigenvalues will overlap the asymptotic (high-order) distri- 
bution of eigenvalues, for which analytic formulae may be derived, and the complete 
spectrum may be found. Apart from any difficulties in the analysis or calculation, 
this concentration on the first eigenvalue may be due to the facts that (i) experiments 
suggest that there is only a single unstable mode and (ii) for those flows for which 
the higher modes have been calculated, i.e. plane Couette (Gallagher & Mercer 1964), 
plane Poiseuille (Grosch & Salwen 1968; Orszag 1971) and pipe Poiseuille flow 
(Lessen et al. 1968; Salwen & Grosch 1972), these higher modes have been found to be 
highly damped. 

Very recently Jordinson (1971), Mack (1976) and Corner, Houston & Ross (1976), 
using different numerical methods, have calculated the higher eigenvalues of the 
Orr-Sommerfeld equation for Blasius flow. Jordinson calculated eigenvalues for the 
spatially and temporally growing or decaying modes for a single Reynolds number 
and a single wavenumber (temporal problem) or a single frequency (spatial problem). 
Mack calculated the eigenvalues for a number of different values of the wavenumber 
and Reynolds number for the temporal stability problem. Corner et al. recalculated 
the spatial modes. While there is some disagreement in the number and location of the 
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eigenvalues found, all of these authors agree that at any Reynolds number there is 
only a finite, and small, number of discrete eigenvalues. A finite set of eigenfunctions 
cannot be a complete set. How, then, can an arbitrary initial disturbance be expanded T 
These authors suggest that there is a continuous spectrum. 

We know of no general results concerning the spectrum of the Orr-Sommerfeld 
equation for an arbitrary parallel shear flow in an unbounded domain. For the Orr- 
Sommerfeld equation in a bounded domain or in the case of the inviscid stability 
problem, for which the governing equation is the Rayleigh equation, a number of 
specific problems have been studied in detail, and some general results concerning the 
spectrum are available. 

Much is known about the spectrum of the inviscid stability problem (the Rayleigh 
problem). Howard’s circle theorem (1961) states that all eigenvalues of the Rayleigh 
problem lie in a circle in the complex plane whose diameter is the range of the un- 
disturbed velocity. Case (1960) has studied the spectrum of inviscid plane Couette 
flow and shown that there are no discrete eigenvalues; there is only a continuum. In 
the same paper Case generalized this result and showed that, for any mean velocity 
profile in a finite domain, the Rayleigh problem always has a continuous spectrum in 
addition to the discrete spectrum, if one exists. Rosencrans & Sattinger (1966) and 
Sattinger (1967) have proved, under fairly general conditions on the velocity profile 
of the mean flow, that the Rayleigh problem in a finite domain has only a finite number 
of discrete eigenvalues. Plane Couette and Poiseuille flows and, it appears, most other 
physically reasonable flows in a finite domain satisfy the conditions of this theorem. 

Case (1961) and Lin (1961) have examined the connexion between the spectrum 
of the inviscid problem and that of the viscous problem for a finite domain. Case has 
shown that, if the initial conditions are independent of the viscosity (Reynolds 
number), the solution of the viscous problem approaches the solution of the inviscid 
problem as the viscosity goes to zero and hence has a continuous spectrum. Lin has 
pointed out that, for the viscous problem, the initial conditions in general depend on 
the viscosity and, therefore, Case’s theorem does not apply. Lin has further shown 
that the Orr-Sommerfeld equation has only discrete eigenvalues in a bounded domain. 

It has been proved that the Orr-Sommerfeld equation has a complete set of eigen- 
functions for the specific cases of plane Couette flow (Haupt 1912) and plane Poiseuille 
flow (Schensted 1960). DiPrima & Habetler (1969) have proved a completeness 
theorem for a class of non-self-adjoint eigenvalue problems in a bounded domain. 
Using this theorem they showed that the BBnard problem (linear stability of a layer 
of fluid heated from below), the Taylor problem (linear stability of the flow between 
rotating concentric cylinders) and the Orr-Sommerfeld equation for any flow in a 
bounded domain have a complete set of eigenfunctions. 

None of these results apply to the Orr-Sommerfeld equation if the domain is 
infinite as it is for Blasius A ow. The possibilities for the spectrum of the Orr-Sommerfeld 
equation in an infinite domain are (a)  that there is an infinite set of discrete eigenvalues 
without a continuum, ( b )  that there is an infinite set of discrete eigenvalues with a 
continuum, ( c )  that there is a finite number of eigenvalues without a continuum or 
(d )  that there is a finite number of discrete eigenvalues with a continuum. 

In this paper we shall not be concerned with whether or not the discrete spectrum 
of the Orr-Sommerfeld equation is finite in an infinite domain. We shall consider the 
existence of a continuous spectrum of the Orr-Sommerfeld equation for both the 
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temporal and the spatial problem. In $ 2, it is shown that the Orr-Sommerfeld equation 
has a continuous spectrum for awide class of shear flows in an infinite domain. Formulae 
for the continuous spectrum in terms of the wavenumber or frequency and the Reynolds 
number are given for these flows. Detailed calculations of the continuous spectrum 
and examples of the continuum eigenfunctions for two specific flows, the Blasius 
boundary layer and the two-dimensional laminar jet, are given in f 3. Also included 
in 5 3 is a physical interpretation of the modes. Section 4 contains some speculation 
on mechanisms by which these modes could lead to transition. Finally, $ 5  is a brief 
summary of our results. 

In a future paper (part 2) we shall consider detailed representation of particular 
disturbances in terms of these eigenfunctions and their spatial and temporal evolution. 
We also plan to study at some later time the mechanisms (suggested in 5 4) by which 
these modes might lead to transition. 

2. General analysis 
2.1. Formulation 

The basic flow is a parallel shear flow (U(y), 0, 0) in a Cartesian co-ordinate system 
(x, y, 2). We consider infinitesimal two-dimensional disturbances to this flow. The 
stream function of the disturbance is assumed to be of the form 

+(x, y, t )  = $(y) eia(z4). (1) 

As is well known, with these assumptions the linearized Navier-Stokes equations 
reduce to the Orr-Sommerfeld equation: 

All variables are dimensionless; the length scale is L, the velocity scale is U, and the 
time scale LIU,. As usual, a is the wavenumber, c the phase speed and R the Reynolds 
number U,L/v, with v the kinematic viscosity. Equation (2) is to be solved with 
suitable boundary conditions (discussed below). In  the temporal stability problem a 
is real and c is complex, so that the flow is unstable if Im c > 0. For the spatial stability 
problem, 

w = ac 

is real and a is complex; the flow is unstable if Im a < 0. 
The disturbance ( 1 )  is just a single eigenfunction of the stability problem. If, as is 

the case for the temporal stability problem of plane Poiseuille flow, the Orr-Sommer- 
feld equation has an infinite set of discrete eigenvalues {cn} and a corresponding 
complete set of eigenfunctions {$n(y)}, the most general solution of the linearized 
Navier-Stokes equations has, at fixed R, a stream function of the form 

(3) 
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where the A,(a) are ‘Fourier’ amplitudes. A physical disturbance in the flow will, 
in general, excite a mixture of modes, and this, for the case of temporal stability, 
corresponds t o  specifying Y(x, y, 0). If any mode $n(x, y, t; a )  grows in time, then the 
initial disturbance, or rather part of it, grows in time. 

I n  order to  generate only a single mode with a given wa.venumber a,, Y(x, y, 0) 
must be spatially periodic with wavenumber a,,. 

For an aperiodic initial disturbance the integral over a in (4) must be retained 
and the form of the disturbance a t  large twill be 

YJ. = A l b )  A(y; a) expia(x - C l ( 4 )  t d a ,  ( 5 )  

where q41(y; a )  is the mode with the maximum a I m  c and the major contribution will 
come from a band of wavenumbers near the fastest-growing mode. 

Actually the temporal stability problem does not represent the controlled experi- 
ments that  are carried out in shear flows. These experiments involve the generation 
of a periodic disturbance of fixed frequency at some fixed x position, say x,, and 
observation of the spatial growth or decay of the disturbance, in this case 

z A,@) #,(y; w )  exp 2 - 4 1  dw. (6) w x ,  Y, t )  = /:rn nml 

I n  principle Y(x,,, y, t ) ,  which is periodic in time and is of the form 

Y ( X , ,  y, t )  = P ( Y )  exp (iwot), (7) 

is known and so the A,(@) can be found. If, as appears to  be the case for Blasius flow, 
the higher TS modes are highly damped compared with the fundamental TS mode, 
they decay rapidly with increasing x, and some distance downstream from the disturb- 
ance generator only the fundamental mode is observed. 

Clearly the TS modes are only a mathematical device for representing physical 
disturbances. It is only an accident that  the higher TS modes are highly damped, so 
that some distance downstream from a disturbance generator the pure, fundamental 
TS wave can be observed, even though a pure, fundamental TS wave is not generated 
by the physical disturbance generator. If the Orr-Sommerfeld equation has eigen- 
functions other than the TS modes, they too must be regarded as mathematical 
representations of portions of physically realizable disturbances. 

For a general shear flow, i t  is conceivable that the Orr-Sommerfeld equation might 
not have an infinite set of discrete eigenvalues and so could not possibly have a complete 
set of corresponding eigenfunctions or that, even if i t  had an infinite set of discrete 
eigenvalues, the corresponding infinite set of eigenfunctions might not be complete. 
I n  either of these cases completeness could require the inclusion of ‘improper eigen- 
functions’ (Friedman 1956, p. 233) corresponding to  a continuous spectrum. If this 
were the case, then the stream function could not, in general, be represented as a 
sum over only the discrete modes, as in (4); the contribution from the continuum 
must be included, i.e. for the temporal problem 

(8) 
where the integral in the second term is taken over the continuum o f c .  
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This latter case is quite common in other branches of physics. Consider, for example, 
the non-relativistic Schrodinger equation (Landau & Lifshitz 1959, p. 48) for an 
electron in a potential. If the potential is that of hydrogen, it is easily shown that 
there is an infinite set of discrete eigenvalues and corresponding eigenfunctions which 
are not complete. Completeness requires the inclusion of the continuous spectrum 
and ‘improper’ eigenfunctions. If the potential is that of the deuteron, there is only 
one discrete eigenvalue, and completeness requires the inclusion of the continuum 
modes (Bethe 1947, p. 34). In  both these cases the discrete eigenvalues are the energy 
levels of the bound states of the electron, and a point on the continuum is the energy 
of an electron which is scattered by the potential. 

A trivial example may serve to illustrate the essential point of this argum,ent. 

(9) 
Consider the wave equation 

If we look for solutions of the form 

(10) 

(11) 

(12) 

(13), (14) 

and these eigenfunctions are orthonormal and form a complete set. If we consider the 
infinite domain 0 < x < 00, instead of the finite domain 0 < x < 1, and impose the 
boundary conditions 

u(0,t) = 0,  ( 1 5 4  

u(x , t )+O as x300, (15b)  

i t  is obvious that there are a finite number of discrete eigenvalues; in fact, there are 
no eigenvalues. If, however, the boundary condition (15 b )  is relaxed to 

a2ulat2 = a2uIax2. 

u(x,  t )  = f ( x )  eiot, 

d2f/dx2 + &f = 0. 

u(0,t) = u(1,t) = 0, 

thenf(x) is a solution of 

If the boundary conditions for (9) are 

then there is an infinite set of discrete eigenvalues {an} and eigenfunctions {f,(x)}, 

w, = nn, fn(x) = 2-4 sin (nnx), ?z = 1,2 ,3 ,  . . . , 

u(z, t )  bounded as x -+ co, (15c) 

then the spectrum is a continuum, with w real and w 2 0, and the ‘improper’ eigen- 

(16) 
functions are 

f ( x ;  w )  = (2n)-4 sin wx. 

These eigenfunctions are improper in the sense that they are not square integrable 
in [0, m), but, as written, they are &function normalized, i.e. 

IOmf(x; w ) f ( x ;  w’)  dx = 6(0 - w’). 

This example is, of course, trivial. The Fourier sine series on [0,1] has been replaced 
by the Fourier sine integral on [0 ,  a). The fact that the continuum eigenfunctions are 
improper (not square integrable in [O,oo)) is so familiar as to be accepted without 
comment. The fact that f ( x ;  w )  is not a physically realizable mode but only a mathe- 
matical representation of a portion of a wave packet, which is physically realizable, 
is a familiar concept. 
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It will be shown below that the Orr-Sommerfeld equation for a wide class of shear 
flowsin an infinite domain always has a continuous spectrum and that the corresponding 
continuum or ‘improper ’ eigenfunctions are &function normalizable. The f i s t  step 
in showing this requires an examination of the boundary conditions. 

2.2. Boundary conditions for the Orr-Sommerfeld equation 

The Orr-Sommerfeld equation (2) is to  be solved with suitable boundary conditions 
in [0, 00). First consider the boundary conditions at y = 0. 

If the flow is a boundary layer, i.e. there is a solid wall at y = 0, then the velocity 
components (u, v, 0) of the disturbance must vanish at  y = 0. Since 

u = a+/%, v = - a $ p x  (18) 

# = d#/dy = 0 a t  y = 0. (19) 

two of the boundary conditions for a boundary layer are then 

If the flow is an unbounded shear flow such as a jet, wake or free shear layer, # 
can be written as a sum of symmetric and antisymmetric modes (symmetry about 
y = 0). If U ( y )  is symmetric about y = 0, as is usual for a jet or wake, the symmetric 
and antisymmetric modes are uncoupled solutions of (2). However, if U(y) is anti- 
symmetric, as in a free shear layer, for example, the symmetric and antisymmetric 
modes are coupled. For # symmetric about y = 0, the boundary conditions are 

d#/dy  = d3#/dy3 = 0 at y = 0, (20) 

# = d2#/dy2 = 0 at y = 0. (21) 

while the boundary conditions for an antisymmetric mode are 

What boundary conditions are to be applied a t  infinity? It is almost universal to 
require that u and v vanish a t  infinity and hence that 

#,d#/dy+O as y j - 0 0 .  (22) 

This condition ensures, of course, that 

the star denoting the complex conjugate, i.e. it  ensures that # is in L,. This boundary 
condition will not be used in this paper. Instead the weaker condition 

will be imposed. 
Clearly if u, v + 0 as y + 00 they are also bounded as y-f 00. But if there are modes 

that are bounded as y+00 which do not satisfy (22) (u, v+ 0 as y-+oo), then they are 
‘improper’ eigenfunctions and must be regarded as a mathematical device for repre- 
senting a class of physical disturbances. It will be shown below that the eigenvalues 
of the modes which satisfy (24) but not (22) form a continuum, and the sum over modes 
in (4) and ( 6 )  must be replaced by a sum over the discrete modes and an integral over 
the continuum as in (8). 

#, d#/dy bounded as y -+ 00 (24) 
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2.3. The continuous spectrum 
The temporal stability problem. Equation (2) is a fourth-order linear differential 

equation and therefore has four linearly independent solutions q5j(y), j = 1 , 2 , 3 , 4 .  The 
asymptotic (i.e. y + m )  form of these solutions can be found by considering (2) as 
y- tco.  For the class of shear flows we are considering, 

U(y)-+U, (a constant), U'(y) ,  U"(y)-tO (25) 

as y-tco. If U ( y )  does not approach a constant as y- tco ,  then there is no Galilean 
transformation under which the flow has finite energy. The constant Ul is unity for 
a boundary layer, a wake or a shear layer and is zero for a jet. 

Then, as y-tco, (2) becomes 

(-$-az)'# = i aR  [(U,-c) ( g - a z ) ]  6, 

a fourth-order differential equation with constant coefficients. The four independent 
solutions of the Orr-Sommerfeld equation are then asymptotic to the solutions of 
(26), i.e. 

A , = - & ) ,  A, = +Qg, A, =-a,  A,= +a, (28 a-d) 

(29) 

q51 and #, are the 'viscous' solutions while q53 and #4 are 'inviscid' solutions. For the 
temporal stability problem and a general complex c, A, has a negative real part and 
A, has a positive real part, so only q5, and q53 satisfy the boundary conditions (24). A 
linear combination of and q53, the decaying viscous and inviscid solutions, also 
satisfies the more stringent boundary conditions (22). 

The Orr-Sommerfeld equation (2) can then be solved for 4, and $3. The eigenvalue 
problem then reduces to  finding a value of c for which a linear combination of #, and 
#, will satisfy the two boundary conditions at  y = 0, i.e. (19), (20) or (21). 

Note that all these solutions satisfy (22) as well as (24), i.e. they are in L,. However 
there is another class of solutions, which satisfy (24) but not (22). To see the asymptotic 
( y  +a) form of these solutions, assume that Q is real and negative, i.e. 

Q = iaR( V, - C )  + 01'. 

Re& = aRci+aa c 0, 

ImQ = aR(U,-c,) = 0. 

( 30) 

(31) 

From (30), ci < -a/R, 
which is written, for convenience, as 

c.2 = - (1 + k2) a / R ,  k real and non-zero. (33) 

Since aR + 0, (31) gives c, = u,. 
The trivial solution a = 0 implies # = 0. 

Now c = UI--i(l +k2)OL/B 

(34) 

(35) 

gives Q = -k2a2 (36) 

A, = - ika,  A, = +ika.  ( 3 7 a J  b ,  
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and $2, as well as $3, the decaying inviscid Therefore both the viscous solutions 
solution, satisfy the boundary condition (24 )  as y-+00, and 

The independent solutions $2 and $3 to (2) are found, and the boundary conditions 
(19) ,  (20 )  or (21 )  at y = 0 are applied. Because there are three arbitrary constants and 
only two conditions to be satisfied, the boundary condition at  y = 0 can always be 
satisfied. 

The temporal stability problem for the Orr-Sommerfeld equation has, therefore, a 
continuous spectrum along the line 

c = U 1 - i ( l + k 2 ) a / R  (39)  

in the complex c plane for arbitrary real positive k .  Now, Ul = 1 for a (suitably 
normalized) boundary layer, wake and shear layer and Ul = 0 for a jet. All of these 
continuum modes are thus damped (ci < 0); however, the damping rate 

aci = - ( 1  + k2) a2 /R (40)  

is quite small, at least for small k, because a2/R < 1 in most situations. The continuum 
eigenfunctions are of the form of (38 ) ,  where two of the three constants are determined 
from the boundary conditions at y = 0 and the third is arbitrary. 

(41)  
When k = 0, A, = A, = 0 

and $1 1 s  4 2 - Y )  (42% b )  

and $ is once again a linear combination of $1 and $3. In  general this value of c will 
not be an eigenvalue. 

The spatial stability problem. The case of spatial stability can be treated in an 
exactly similar way. In  this case o is real, a is complex and we require that 

Re& = a:-a:-RUlac < 0 (43)  

and ImQ = 2a ,ac+RUla , -Rw = 0. (44 )  

From (44 ) ,  at = $R(o/a,- 77'). (45 )  

Let the left-hand side of the inequality (43 )  be set equal to - Bk2R2, with k real and 
non-zero. 

Then, substituting for ai from (45 ) ,  it is found that 

with 

(46)  

(47)  

therefore the continuous spectrum for the spatial stability problem lies on the curve 
given parametrically by (45)-(47) .  It can be shown that the positive square root must 
be taken in ( 4 6 ) .  If the negative sign is taken, (43 )  implies that a4 < 0, which is impos- 
sible. It can further be shown that both a, > 0 and ai > 0. Since ai > 0, all the con- 
tinuum modes are damped for the spatial stability problem. 

It is interesting to examine a few special cases. In  most cases of interest w / R  < 1. 
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For a boundary layer, wake or free shear layer, Ul = 1, and it is easily shown from 
(45)-(47) that, with w / R  < 1, as k - +  0 

a,+@, a i+R[$k2+  ( U / R ) ~ ] ,  (4% (49)  

c w 1 - i [ f k 2  + ( w / R ) ~ ] / ( w / R ) ,  (50) 

while as k -+ co ar + w / k ,  a, -+ QkR, (5112 (52 )  

c M 4 ( ~ / R ) ~ k - ~  - i 2 ( o / R )  k-l. (53) 

In  all cases c,, the phase speed, is less than or equal to the free-stream speed. The 
least-damped modes are those for which c, w 1 as k -+ 0 or c, w 0 as k + 00. The former 
are progressive waves moving at nearly the free-stream speed and the latter are 
standing waves. 

For a jet U, = 0 and it is easily seen that, with w / R  < 1, as k+ 0 

a+ (BUR)# (1 +i), (54 )  

c E ( 4 2 R ) t  (1 -i), (55) 

while as k+co a -+ wk-I + QiRk, (56)  

c w ~ ( O / R ) ~  k-3 - i 2 ( w / R )  k-l. ( 57 )  

In  the limit k +  a, the same results are obtained for a and c whether Ul = 0 or U, = 1. 
The reason for this is that the limiting process is the same, i.e. UJk- f  0. 

3. Application to specific shear flows 
3.1. The Blasius boundary layer 

The flow is that past a semi-infinite flat plate and the velocity profile U(y) is the 
Blasius boundary-layer profile (Batchelor 1967, p. 308). The velocity and length 
scales chosen in this case are U,, the free-stream speed, and 

a x )  = (VX/U,)4 (58 )  

where x is the distance from the leading edge. With this choice of length scale the 
momentum thickness 6* and the boundary-layer thickness dare 1-72 L(x)  and 5-04 L(x),  
respectively. Since U(y) -+ 1 as y - f  00, Ul = 1 and for the temporal stability problem 
the continuous spectrum lies along 

cT = 1 -i(l + k z ) a / R  (59)  

in the complex wavenumber plane, while for the spatial stability problem the 
continuous spectrum lies along the curve in the complex wavenumber plane given 
parametrically by 

c, = wa*/ la lZ,  (60) 

a, = { ~ [ ( p z + ~ z R 2 ) ~ - P 1 } ~ ,  (61 )  

and 

a, = +R(w/a , -  I )  

/3 = tR2(1 + k'). 
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Figure 1 shows the complex c plane. The continuous spectra for both the temporal 
problem (a = 0-179, R = 580.0) and the spatial problem (a = 0.04649, R = 580.0) are 
shown as well as the TS eigenvalues computed by Corner et al. and Mack (1976).t 
None of the TS modes found by Mack or Corner et al. lie on the continuous spectrum. 

We have calculated the continuum eigenfunctions of the temporal problem, for 
the values of (a, R) given above, at  a large number of points on the continuous spectrum. 
The numerical method is very similar to that used by Mack. For example, consider the 
temporal problem at a given a and R. A value of k is chosen, and from (59) a point 
on the spectrum is determined. The upper boundary condition is applied at some 
large y, say yo, where (25) is satisfied to at least one part in lo*. A value of yo = 9 is 
sufficient at a = 0.179, R = 580; then at yo 

(64)-(66) 

From these equations +;(yo), #;(yo) and #;(yo) are determined. The Orr-Sommerfeld 
equation (2) is then numerically integrated to y = 0 by a fourth-order Runge-Kutta 
method. A linear combination of the three independent solutions evaluated at y = 0 
is then chosen to satisfy the boundary conditions, in this case (19). This leaves one 
of the three constants undetermined. Choosing this constant effectively determines 
the normalization. The normalization we have chosen is to set A ,  the coefficient of 
q51, equal to one. 

The nature of these eigenfunctions can be seen by considering them in the far field, 
i.e. as y-tco. For any k, the continuum stream function is, as y + q  

$1 = exp ( - iIcayo), q52 = exp (ikayo), = exp ( - aye). 

N exp [ia(x - Icy - c t ) ]  + B exp [ia(x + ky - ct)]  + C exp ( - ay) exp [ia(x - c t ) ]  

= exp [ - ( 1  + k2) a2t/R] {exp [ia(x - ley - t ) ]  + B  exp [ia(x + ky - t ) ]  

+ C exp ( - ay) exp [ia(x - t ) ] } .  (67) 

The amplitude of the stream function is decaying exponentially in time with a decay 
time of R/[a2( 1 + l e2) ] .  Apart from this decaying amplitude, the first term in the bracket 
is a progressive wave, with an amplitude of unity, travelling towards the solid 
boundary. The magnitude of the wavenumber is a( 1 + k2)4 and the propagation vector 
lies at  an angle - 6 with respect to the x axis, where 

6 = tan-1 (13). (68) 

The second term is an outgoing wave with complex amplitude B. The wavenumber 
is of the same magnitude as that of the incoming wave while the propagation vector 
is at  the angle + 6 with respect to the x axis. The third term is a ‘wall ’ wave with 
complex amplitude C, which decays outwards from the wall. This wave is propagating 
parallel to the wall with wavenumber a. 

In  the language of scattering, these continuum modes consist of an incoming wave 
(amplitude = 1,  angle of incidence = 6) which interacts with the boundary layer and 
reflects as an outgoing wave (complex amplitude = B, angle of reflexion = 0). A ‘wall ’ 
wave (complex amplitude = C )  is generated which, in combination with the incident 
and reflected waves, satisfies the boundary conditions at  y = 0. The complex ampli- 
tudes B and C are, of course, determined by the detailed shape of the velocity profile 

t The values given here differ from those in the paper of Corner et al. (1976) because they used 
the displacement thickness as the length scale, instead of L as given in (58). Mack uscd L as the 
length scale. 
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FIGURE 1. The spatial and temporal spectnim of the Orr-Sommerfeld equation for Blasius flow 
a t  R = 580.0 and o = 0.04649 (spatial) or a = 0.179 (temporal). Points of the discrete spectrum 
a t  this R and o or a:  A ,  as computed by Corner et al. (1976) (spatiel modes); 0, results of Mack's 
(1976) calculations (temporal modes). 

through the Orr-Sommerfeld equations and the boundary conditions at  y = 0. For a 
fixed a and R, B and C also vary with k. 

The magnitudes and phases of the complex amplitudes B and C are shown in 
figure 2 as a function of 8, the angle of incidence of the incoming wave, for the temporal 
stability continuum at a = 0.179, R = 580-0. The magnitudes of B and C are plotted 
in figure 2 (a )  and the phases in figure 2 (b ) .  

As B - t O ,  i.e. at grazing incidence, IBI -+ 1, phB+n, ICl -+O and phC-t-  99". 
As 8 increases, IBI and ph B both decrease slowly up to 8 M 65". In  the same range 
ICl increases and phC decreases. The maximum of ICI occurs at  8 M 65") where 
ICI M 3.7 and phC x - @r. For larger 8, ICI decreases very rapidly, and both phB 
and phC decrease rapidly. The variations of ph B and phC are shown only up to  
8 M 85". The decrease in the phase with 6 is so rapid for larger angles of incidence that 
it is not possible to show it on this figure. 

The real and imaginary parts of #I are shown in figure 3 as a function of y for the case 
a = 0.179, R = 580.0 and k = 2.0 (6 = 63.43"). It can be seen that the disturbance is 
very small within the lower part of the boundary layer (the top of the boundary layer 
is a t  y = 5.04). This was found to  be true for all 6. These continuum modes are essenti- 
ally free-stream modes and do not penetrate very far into the boundary layer. 

Contours of the stream function $ in the far field for the same case are shown in 
figure 4. The region shown is 0 6 ax < 47r, 10n < ay < 14n. It can be seen that these 
continuum modes are a doubly periodic array of vortices in the free stream. The ratio 
of the wavelength in the x direction to that in the y direction is k, in this case 2.0. 
Because 1AI -+ IBI, the axes are tilted and the vortices are distorted. The vortex 
array is moving with the free stream, i.e. has a phase speed of 1.0, and the vortex 
strength is decaying in time as exp [ - (1 + k2) a2t/R].  It is readily seen that all the 
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FIGURE 2. The magnitudes and phases of the complex amplitudes B and C for the temporal 
continuum modes of the Blaaius boundary layer a t  a = 0.179, R = 580. 

continuum modes are of the same general form in the far stream. The aspect ratio of 
the vortices and the distortion depend on k and B(k).  If k and B were both equal to  
1-0, this flow field would be the well-known Taylor (1923) vortex solution. 

Some related results have been obtained by Rogler (1975) and Rogler & Reshotko 
(1975), who considered the response of a boundary layer to  an array of non-decaying 
free-stream vortices. This problem is not, as emphasized by Rogler & Reshotko, an 
eigenvalue problem, because the form of the vortex array is imposed in the far field, 
as well as the requirement that  the vorticity be constant in time. Applying a per- 
turbation analysis to  the Navier-Stokes equations, Rogler & Reshotko obtained, 
formally, an inhomogeneous Orr-Sommerfeld equation with a forcing function de- 
pending on the mean velocity field and the vortex array. It should be emphasized that 
the vortex arrays considered by Rogler & Reshotko are not the continuum eigen- 
functions of the Om-Sommerfeld equation. The connexion between these continuum 
modes and the free-stream vortices used by Rogler & Reshotko will be discussed in a 
later paper (part 2). 

3.2. The two-dimensional (plane) laminar j e t  

As a second example, the continuum modes of the two-dimensional laminar jet will 
be discussed. The velocity of this jet is, in dimensionless units, 

U(y) = 1 - tanh2y. (69) 
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FIGURE 3. The real part $,(y) (solid line) and imaginary part g$(y) (dashed line) of $(y) w. y for 
the temporal continuum mod0 of the Blasius boundary layer at a = 0.179, R = 580 and k = 2 
(8 = 63.430). 

FIGURE 4. The far-field stream function of the temporal continuum mode of the 
Blasius boundary layer a t  a = 0.179, R = 880 and k = 2 (8 = 63.43"). 
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The length scale L(x)  and velocity scale U,(z) are 

L(z) = [48~~z~ /K]*  (70) 

and U,(Z) = [3K2/32~z]*, (71) 

where 

is the momentum flux per unit density per unit width of the jet (Schlichting 1951, 
p. 164), the carets denoting dimensional quantities. 

It is clear that the parallel shear flow approximation is poorer for a jet (L(z) - d )  
than for a boundary layer (L(x) N x&), but we shall not consider here the modification 
to  the continuum necessary in the non-parallel flow approximation (but see Q 4). 

The free-stream speed is zero for the jet, and so the continuous spectrum for the 
temporal stability problem lies along the line 

(73) 

As discussed above, this symmetric jet has two continuum modes, the symmetric 
and antisymmetric modes, for each point on the continuum. In both cases the modes 
are decaying standing waves. 

cT = - i( 1 + k2)  a/R. 

The continuum of the spatial stability problem for the jet lies along the curve 

01, = (&kR){*[l+ 1 6 ( ~ / k ~ R ) ~ ) & -  l]}&, 

L X ~  = ~ k - l { i [ ( l +  1 6 ( ~ / k ~ R ) ~ ) $  - 1]}-$. 

(74) 

(75) 

In  contrast to the temporal stability problem, the continuum modes of the jet for the 
spatial stability problem are spatially decaying travelling waves with a wave speed 

c = W/LX,. = (2w/kR) is[( 1 + 1 6 ( ~ / k ~ R ) ~ ) &  - 1]}-*. (76) 

We have calculated the symmetric and antisymmetric continuum modes of the 
laminar jet for the temporal stability problem at a = 1.0, R = 50.0 and 0 < k < 100.0 
(0 < 0 5 89.4"). The numerical method is identical to that used for the boundary layer. 

The amplitudes and phases of B and C for the antisymmetric modes are plotted vs. 
8 in figure 5 for the case a = 1.0 and R = 50. We have also calculated the corresponding 
amplitudes and phases for the symmetric modes a t  this value of (a, R). Although the 
forms of the eigenfunctions are different near y = 0 for the symmetric and anti- 
symmetric modes, the differences between the numerical results for the amplitudes 
and phases are so small that they cannot be shown on this figure. 

From this figure it can be seen that, as 6+0, IBI+1.0 and ] C / + O ,  while 
phB+ 180" and phC+ - 45". The amplitudes of both B and C rise monotonically 
with increasing 8 to a peak response at  8 z 79.5" (k zi 5.15) and then decrease rapidly. 
The phases of B and G decrease monotonically with increasing 0, slowly for 0 5 79.5" 
and then very rapidly. The phases are not shown for 8 > 85" because the extremely 
rapid variation with 8 in this region makes it impractical. 

The maximum amplitudes of B and C are very large for the jet as compared with 
the boundary layer when it is noted that in both cases the normalization is the same, 
i.e. A = 1 for all 8. In  the case of the jet, the maximum amplitude of B is about 4850 
(1.0 for a boundary layer) and the maximum amplitude of C is about 2300 (3.7 for a 
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FIGURE 5. The magnitudes and phases of the complex amplitudes B and C for the temporal 
continuum modes of the two-dimensional laminar jet a t  a = 1 and R = 50. 

boundary layer). This was to be expected in view of the very low critic& Reynolds 
number for a jet (of order 10) as compared with the critical Reynolds number for the 
Blasius boundary layer (about 300 with this length scale). 

This same sensitivity of the jet to the free-stream disturbances can be seen in 
figures 6 and 7, where Re$ and Im$ are plotted 8s. y for the symmetric and 
antisymmetric modes with a = 1.0, R = 50.0 and k = 2.0 (0 = 63.43'). It can be seen 
that in both cases the disturbance penetrates much further into the jet than was the 
case for the boundary layer. If the 'edge' of the undisturbed jet is defined as the 
point where U ( y )  2 0.001, then the jet occupies the region lyl 5 3, and it is seen from 
figures 6 and 7 that there is quite a substantial disturbance in this region. If the 
amplitude of the disturbance were large enough the apparent 'edge' of the jet could 
be moved by the disturbance. 

Figure 8 shows the far-field stream function for the symmetric mode of the jet at 
a = 1.0, R = 50.0 and k = 2.0. The region shown is 0 < ax < 8n, 1 0 ~  < ay < 1 4 ~ .  
As in the case of the Blasius boundary layer, the far field is a doubly periodic array of 
vortices, but in contrast to the boundary layer the vortices are highly distorted since 
IB\ is considerably different from 1.41 = 1. At this distance (y > 30) from the jet 
axis the trapped mode is negligible. The far-field stream function for the antisym- 
metric mode is essentially identical to that for the symmetric mode and is not shown. 
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symmetric temporal stability mode of a two-dimensional laminar jet a t  a = 1 ,  R = 50 and k = 2 
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FIGURE 7. The rod  part $,(y) (solid lino) and imaginary part #i(?y) (dashed line) of $(g) for the 
antisymmetric temporal stability mode of a two-dimonsional laminar jet at a = 1, R = 50 and 
k = 2 (a = 63.430). 
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FIGURE 8. The far-field stream function of the symmetric temporal continuum 
mode of the laminar jet at a = 1, R = 50 and k = 2 (6 = 63.43"). 

4. The continuum modes and transition 
All the continuum modes, both temporal and spatial, for the linearized stability 

problem of an unbounded parallel shear flow are damped; the flow is linearly stable 
with respect to  these modes. It is, of course, possible that if the free-stream vorticity 
were sufficiently intense the nonlinear problem would yield growing solutions, i.e. 
the flow would be unstable to these modes and transition would result. 

We believe, however, that there are three possible mechanisms by which small 
amplitude continuum modes might lead to transition. The first mechanism involves a 
small quasi-steady distortion of the mean profile by the continuum modes, the second 
mechanism requires the consideration of the fully time-dependent flow, consisting 
of the mean flow plus the slowly decaying continuum modes, while the third mechanism 
involves consideration of the non-parallel flow corrections to the continuum spectrum. 

The usual picture of transition via TS waves in a boundary layer consists of  the 
appearance of a small amplitude, unstable TS wave of unspecified origin; its growth 
through the region of validity of the linear theory; the appearance of small nonlinear 
effects, i.e. higher harmonics and, more important, a small three-dimensional distor- 
tion of the mean profile near the top of the boundary layer; and finally the appearance 
of short wavelength, rapidly growing TS waves which lead directly to  the appearance 
of a turbulent burst. It is believed that the penultimate stage, the distortion of 
the mean profile near the top of the boundary layer, is crucial. This distortion, in 
the region where U" is small, causes U" to change sign, and the inflexion in the mean 
profile permits the appearance of small wavelength, highly unstable TS waves. These, 
presumably, become nonlinear rather quickly and cause a further distortion of the 
mean profile, and so on to transition. This is, in effect, a modified Landau model. 

Now consider the effect of a small patch of vorticity in the free stream. Assuming, 
as we shall show in part 2, that we can represent this by an integral over the continuum, 
continuum modes of all wavelengths are present and exciting the boundary layer. 
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Among these are small a,  small k continuum modes, i.e. lightly damped, long wave- 
length and hence low frequency modes. In  a quasi-steady model these produce a 
small quasi-steady distortion of the mean profile in the outer regions where U" is 
small; therefore we might expect that the boundary layer has reached the critical stage 
when short wavelength, highly unstable TS waves can appear without a long wave- 
length, slowly growing TS wave ever being experienced. In  effect, this mechanism 
would bypass the linear TS stage and appear to lead directly to the late stages of 
transition. 

The second mechanism involves consideration of the fully time-dependent flow, 
consisting of a superposition of the mean flow and the small amplitude continuum 
modes. Again sonsider the effect of a small patch of free-stream vorticity. Among the 
modes necessary to represent this patch there will be small a modes, i.e. long wave- 
length, lightly damped waves. Let us consider the stability of this time-dependent 
flow: the mean flow plus the lightly damped modes. Relatively little is known about 
the stability of time-dependent shear flows (see Davis (1976) for a recent review), 
but it is known that under certain circumstances these flows can have resonances. 
That is, if the 'matching' is proper, the time-dependent flow can be unstable to TS-like 
modes which extract energy from the mean flow at a rapid rate; they are highly 
unstable. The unstable mode tends to lie near a higher mode of the steady Orr- 
Sommerfeld equation (Grosch & Salwen 1968). Again, if this were to occur, the linear 
TS region of instability would be bypassed and it would appear, in an experiment, 
that the short wavelength, highly unstable waves had been directly excited. 

Finally, let us consider the possible effects of non-parallel flow corrections on these 
continuum modes. Saric & Nayfeh (1975) have developed a general theory which 
permits the calculation of the correction to the spectrum of the Orr-Sommerfeld 
equation due to the non-parallel nature of any nearly parallel shear flow. They have 
applied this theory to  the stability of Falkner-Skan flows. In  all cases which they 
considered, the non-parallel flow corrections resulted in a decrease in the stability of 
the boundary layer compared with the parallel flow calculation at  fixed (real) wave- 
number a and Reynolds number R. That is, aka fixed a, the flow was predicted to be 
unstable a t  a lower R than that predicted by the parallel shear flow approximation; 
also, at a fixed R, the band of unstable wavenumbers was wider than that predicted 
from the usual parallel flow approximation. 

The continuum modes, particularly a t  the long wavelength end of the spectrum, 
are very lightly damped. It does not appear to be unreasonable that non-parallel flow 
corrections may make a portion of the continuous spectrum unstable. 

All of these mechanisms are, at  this time, only hypotheses. We know of no direct 
evidence for or against any of them, other than the observations that free-stream 
turbulence can trigger transition without the appearance of the usual TS waves. We 
believe, however, that all of these mechanisms are sufficiently plausible that experi- 
mental and theoretical tests of them are warranted. We hope to carry out a theoretical 
investigation of these proposed transition mechanisms; we are currently investigating 
the non-parallel flow corrections. 
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5. Summary 
We have shown that the Orr-Sommerfeld equation (for both the temporal and the 

spatial problem) has a continuous spectrum for any mean flow which is an unbounded 
shear flow and has finite energy under some Galilean transformation. 

Formulae for the location of the continuum in the complex wave-speed plane have 
been given. These results have been applied to two specific flows: the Blasius boundary 
layer and the laminar jet. For both of these flows the continuous spectra have been 
given. The continuum eigenfunctions of the temporal probIems have been calculated 
for both flows for a single wavenumber and Reynolds number. It has been shown 
that the eigenfunctions in the free stream are a doubly periodic array of vortices and 
that these eigenfunctions can be thought of as an incident wave, a reflected wave and 
a ‘wall’ wave. If  the amplitude of the incident wave is held fixed, the amplitudes 
and phases of the reflected and ‘wall’ waves vary with the angle of incidence, and 
there is an optimum angle of incidence which maximizes the amplitude of the wall 
wave. It was shown that the continuum modes do not penetrate deeply into the 
region of large shear in the main flow of a boundary layer although they penetrate 
further and have much larger amplitudes in the jet. Finally, three mechanisms were 
proposed by which these continuum modes could cause transition in a shear flow 
while bypassing the usual linear TS stage. These mechanisms are at  present hypotheses; 
we hope to investigate these hypotheses theoretically as well as to investigate the 
relation of these eigenfunctions to the forced free-stream disturbances studied by 
others. We hope that experimentalists will also look for these m0des.t 
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